Acta Crystallographica Section E

## Structure Reports

 OnlineISSN 1600-5368

## Roger A. Lalancette* and Hugh W. Thompson

Carl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, Newark, NJ 07102, USA

Correspondence e-mail:
rogerlal@andromeda.rutgers.edu

## Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.064$
$w R$ factor $=0.162$
Data-to-parameter ratio $=14.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## ( $\pm$ )-trans-1,2,3,4,4a,9a-Hexahydroanthrone

The title compound, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$, is largely flat and rigid, with near coplanarity between the ketone and the aromatic ring. The packing includes two intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ close contacts.

## Comment

The title compound, (I), is the end product in a synthetic sequence designed for a senior chemistry majors' undergraduate laboratory course (see Experimental), the final step of which involves acid-catalyzed internal acylation in trans-2benzylcyclohexanecarboxylic acid (Scribner \& Miller, 1965). Both the trans and the cis diastereomers of the product are known, and the equilibrium between them has been shown to favor (I) by a ratio of $88: 12$ at 298 K (Thompson \& Long, 1988). Thus (I) is isolated more easily than the cis epimer, and because (I) is also the higher melting of the pair by some 9 K , it is more easily purified as well.

(I)

Fig. 1 shows the asymmetric unit for (I), with its numbering. The molecule has no significant flexibility and is largely flat except for the H atoms; the r.m.s. deviation for all non-H atoms from their average plane is 0.190 ( 3 ) $\AA$; the partial flattening of the central ring in turn enforces a slight abnormal flattening in its fully saturated neighbor. Thus, the six internal tetrahedral bond angles for that ring are widened and vary from 110.9 (2) to $112.7(3)^{\circ}$, while the ring-carbon torsion


Figure 1
The molecular structure of (I), with its numbering. Displacement ellipsoids are drawn at the $20 \%$ probability level.

Received 14 July 2005 Accepted 19 July 2005 Online 23 July 2005
angles all have absolute values between 51.6 (3) and 56.5 (4) ${ }^{\circ}$, rather than the $60^{\circ}$ expected for cyclohexane. The dihedral angle for the ketone ( $\mathrm{C} 8 A / \mathrm{C} 9 / \mathrm{C} 9 A / \mathrm{O} 1$ ) versus the aromatic ring is $8.69(11)^{\circ}$. This coplanarity provides almost the fullest possible degree of conjugation, reflected in the $\mathrm{C}=\mathrm{O}$ stretching frequency of the IR spectrum ( $\mathrm{KBr}, 1676 \mathrm{~cm}^{-1}$ ).

Fig. 2 shows the packing arrangement, involving centrosymmetric pairing of molecules. Despite the short interplanar separations for the aromatic rings ( $3.87 \AA$ within the chosen cell, $3.67 \AA$ across the $b c$ face), $\pi-\pi$ stacking is absent because of the offset of the aromatic rings from one another, evident in Fig. 2. Within the $2.7 \AA$ range we routinely survey for nonbonded dipolar packing interactions (Steiner, 1997), two intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ close contacts were found, involving H9A ( $2.66 \AA$ ) in a centrosymmetrically related molecule, and $\mathrm{H} 5 A(2.61 \AA$ ) in a molecule translationally related along $b$ (Table 1).

## Experimental

Friedel-Crafts acylation of benzene with cis-cyclohexane-1,2-dicarboxylic acid anhydride $\left(\mathrm{AlCl}_{3}\right)$ yielded 2-benzoylcyclohexanecarboxylic acid, which was subjected to intentional base-catalyzed stereochemical equilibration to provide the trans epimer (Scribner \& Miller, 1965; Lalancette et al., 1996). Subsequent catalytic hydrogenolysis, employing $\mathrm{Pd} / \mathrm{C}$ in acetic acid, gave trans-2-benzylcyclohexanecarboxylic acid, and this was then cyclized at room temperature with $\mathrm{H}_{2} \mathrm{SO}_{4}$ (Scribner \& Miller, 1965). Sublimation of (I) and recrystallization from hexane provided material of X-ray quality (m.p. 382 K ).

## Crystal data

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$
$M_{r}=200.27$
Triclinic, $P \overline{1}$
$a=7.533$ (5) $\AA$
$b=8.067$ (7) $\AA$
$c=9.317$ (5) $\AA$
$\alpha=82.06(6)^{\circ}$
$\beta=80.95(3)^{\circ}$
$\gamma=81.31(7)^{\circ}$
$V=548.9(7) \AA^{3}$

## Data collection

Siemens $P 4$ diffractometer $\omega / 2 \theta$ scans
Absorption correction: numerical
(SHELXTL; Sheldrick, 1997)
$T_{\text {min }}=0.981, T_{\text {max }}=0.989$
2406 measured reflections
1926 independent reflections
1101 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.162$
$S=1.03$
1926 reflections
136 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.212 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=3.4-9.7^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=296(2) \mathrm{K} \\
& \text { Parellelepiped, colourless } \\
& 0.50 \times 0.25 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

$R_{\text {int }}=0.035$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-8 \rightarrow 1$
$k=-9 \rightarrow 9$
$l=-11 \rightarrow 11$
3 standard reflections every 97 reflections intensity decay: variation $<2.5 \%$

$$
\begin{gathered}
\begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0559 P)^{2}\right. \\
\quad+0.1357 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.13 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.14 \mathrm{e}^{-3}
\end{gathered}
$$



Figure 2
A packing diagram for (I). Displacement ellipsoids are drawn at the 20\% probability level.

Table 1
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 9 A-\mathrm{H} 9 A \cdots \mathrm{O}^{\mathrm{i}}$ | 0.98 | 2.66 | $3.413(4)$ | 134 |
| C5-H5A $\cdots \mathrm{O1}^{\mathrm{i}}$ | 0.98 | 2.61 | $3.354(4)$ | 133 |

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $x, y-1, z$.
All H atoms were found in electron density difference maps but were placed in calculated positions and allowed to refine as riding on their respective C atoms $[\mathrm{C}-\mathrm{H}=0.98 \AA$ for the aromatic and methine H atoms, $\mathrm{C}-\mathrm{H}=0.97 \AA$ for the methylene H atoms, and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: XSCANS (Siemens, 1996); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

## References

Lalancette, R. A., Coté, M. L. \& Thompson, H. W. (1996). Acta Cryst. C52, 244-246.
Scribner, J. D. \& Miller, J. A. (1965). J. Chem. Soc. pp. 5377-5380.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Steiner, T. (1997). Chem. Commun. pp. 727-734.
Thompson, H. W. \& Long, D. J. (1988). J. Org. Chem. 53, 4201-4209.

